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A variable-spacing grid system for finite-difference calculations is presented. The system 
allows single points to be added to or deleted from the mesh independently of each other, 
while maintaining each point at the center of a symmetrical cross formed with four other mesh 
points. The single finite-difference form of the steady, incompressible Navier-Stokes equations 
necessary for use with this system is written in a suitable form insuring stability, and the 
addition-deletion procedure is easily automated and transformed into a self-adjusting 
algorithm capable of recognizing the high-gradient regions of the solution field and selectively 
relining the mesh in those regions. It also determines the best-suited number of points for the 
calculation. The method is finally applied to two test cases to show its performance. (’ 1987 
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1. INTR00ucTl0~ 

Much of the recent research effort in computational fluid dynamics has been 
devoted to the automatic generation of non-uniform grids for finite-difference 
calculations [ 1, 21. Non-uniform grid techniques are dictated in two different 
situations: when fluid flow fields must be simulated in domains with curved solid 
boundaries and in cases, typical of high-Reynolds number fluid dynamics, when 
small regions with very high gradients occur. To be useful, a non-uniform-mesh 
finite-difference method of solution must be simpler than competing finite-element 
methods, and the grid must be automatically generated, to avoid the burden of 
manually collocating thousands of mesh points. To handle most efficiently the high- 
gradient regions, the grid should also be dynamically self-adjusting, with an 
automatic mesh refinement wherever these regions develop. 

A major trend in research on non-uniform grids has been to use as an inter- 
mediate step a coordinate transformation from the physical domain to a calculation 
domain, where a rectangular grid is drawn, or, equivalently, to introduce in the 
physical plane a curvilinear coordinate system and place mesh nodes at constant 
increments of the curvilinear coordinates [2, 31. The differential equations to be 
solved are first rewritten in the transformed plane and then approximated by tinite- 
difference expressions. Generally, these methods solve the problem of the 
automation of grid generation by obtaining the coordinate transformation as the 
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numerical solution to some elliptic partial-differential equation. While this scheme 
and its many variants can easily generate a curvilinear coordinate system fitting any 
boundary shape, its use for selective mesh refinement in high-gradient regions is less 
straightforward, as it requires the introduction in the mesh-generating elliptic 
equation of arbitrary functions, which are to be determined more or less by trial 
and error [2, 3, 51. 

Other authors have been using methods in which a substantially one-dimensional 
coordinate stretching is applied along each direction of a predefined (generally rec- 
tangular or polar) coordinate system. These methods (e.g., [6-81, see also [2]) 
have reached the highest degree of sophistication in grid adaption criteria, but of 
course much less flexibility is allowed in the mesh movements. 

A general limitation of all variable-spacing schemes based upon coordinate trans- 
formations is the topological constraint placed upon the distribution of mesh points 
by the very existence of coordinate lines. This implies that a thickening of the mesh 
in a region must be accompanied by a depletion in the adjacent regions, so it is not 
possible to modify a small part of the grid during the calculation without moving a 
major portion of all the points. 

To avoid these disadvantages, we decided to discard grid-generating algorithms 
based upon curvilinear coordinate systems. We devised a finite-difference scheme 
where mesh points can be created or deleted in any part of the solution domain, 
according to proper rules, independently of each other. Therefore the mesh can be 
easily modified during the iterative calculation and adjusted most closely to the 
features of the developing solution. 

At the basis of our scheme is the well-known observation that a very simple and 
accurate finite-difference approximation of the incompressible Navier-Stokes 
equations (and, indeed, of many other equations of mathematical physics) can be 
written on five points arranged in the shape of a symmetrical cross, whereas if the 
symmetry is broken much accuracy is lost. With this idea in mind, we sought and 
found a scheme of creation and deletion rules for grid points having the property 
that each point is always the center of a symmetrical cross, of varying size, formed 
with four other points belonging to the grid (with the possible exception of points 
lying on the boundary of the domain). The same discretized equations can be used 
for all the points of such a grid, the only variable parameter being cross size, with a 
gain in speed, programming ease and accuracy. 

The grid system is presented in Section 2. Suitable iterative calculation schemes 
for the Navier-Stokes equations and their boundary conditions are presented in 
Sections 3 and 4. Automatic mesh-refinement criteria are discussed in Section 5. 
Calculation examples and tests are contained in Section 6 and 7. 

2. DYNAMICALLY ADJUSTABLE MESH 

The present method applies to those elliptic partial-differential equations like, 
e.g., the incompressible Navier-Stokes equations, which can be written in such a 
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form where the second derivatives appear only aggregated in the Laplacian 
operator. A widespread finite-difference approximation of the Laplacian operator is 
obtained using the values of the unknown function at five points arranged in the 
shape of a symmetrical cross [9]. This formula has a higher order of 
approximation than other formulas employing five points. On the same pattern of 
points first derivatives can be approximated by central differences with second- 
order accuracy, without restrictions on the form in which they appear in the 
equations. 

To exploit the above properties of the symmetrical cross we sought a variable- 
spacing mesh in which each point is the center of a symmetrical cross formed with 
four other points, except at most for points falling on the boundary of the solution 
domain. We also wanted the possibility to increase or decrease dynamically the 
number of points in the mesh, by adding or deleting a single point at a time. 

We found that such a mesh can be built by the following iterative procedure, 
provided the presence of crosses with two different orientations is permitted. 
Assume that at some stage in the process there exists a square pattern in a portion 
of the mesh where each point is the center of a cross formed with its four closest 
neighbours. In the center of one cell of this square grid a new point can be added 
(Fig. la), and a cross can be associated with it whose orientation is tilted by 45” 
with respect to the existing ones and whose vertices are the vertices of the original 
square. The size of the new cross is J’ 2 times smaller than that of the old ones. 

After this operation has been repeated four times on the four squares 
surrounding a point of the initial grid (Fig. lb), the cross associated with this point 
in turn can be substituted by a smaller, 45”-tilted, cross having its vertices in the 
newly generated points. At this stage a square grid pattern is restored (Fig. lc), 
even if with a tilted orientation, and the whole process can be repeated indefinitely, 
giving as tine a mesh as wanted at any particular place. To initiate the process it is 
sufficient to have a mesh composed of four points forming a square, after which a 
fifth point can be added in the middle, and then four along the sides, and so on. 

By this procedure a variable-spacing mesh, fine where required and coarse 

a 

b 

FIG. 1. Steps of the cross addition process. 
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elsewhere, can be built step-by-step, either interactively, under control of the 
operator, or automatically, by adjusting the mesh to the behaviour of the unknown 
function continuously during the calculation. 

Of course, points can be as easily removed from the mesh by reversing the steps 
of the addition process. 

In order to avoid the formation of very irregular clusters of points in the mesh, it 
is useful to add the further constraint that a new point should not be created if the 
cross associated with its neighbours (i.e., the points that are going to be vertices of 
the new cross) is larger than fi times the size of the new cross. When this situation 
occurs, the addition of the new point should be delayed until the size of the 
neighbours is reduced, or, alternatively, the size of the offending neighbours should 
be immediately reduced by adding more points as necessary, and then the new 
point should be created. Conversely, a cross should not be enlarged, for the purpose 
of deleting points, if it is already larger than the crosses associated with its vertices. 

This constraint insures a smooth transition between coarse and fine parts of the 
mesh and is easily incorporated into the mesh-manipulation procedures; besides 
providing a smooth matching between the calculations performed on different-size 
crosses, adherence to this rule simplifies the implementation of the procedures 
necessary to check whether a point exists already in the mesh before creating a new 
point at the same position. 

In order to maximize the speed of calculation and the ease of adding and deleting 
points, the mesh can be represented in a computer program as a linked data struc- 
ture. In particular, each point will be represented by a record containing four links 
to the four ends of the cross centered in that point, a numeric field containing the 
distance of the ends from the center, a flag indicating whether the cross is straight- 
up or tilted, and the numeric values of all the unknowns entering the system of 
equations to be solved. 

To manage the described mesh structure, it is sufficient to prepare two computer 
procedures, one which, when activated, reduces by $ times the size of any par- 
ticular cross, adding points around it as needed, and one which enlarges by ,/? 
times the size of a cross, deleting the points which become no longer necessary. 

The coding of these procedures can profit by the many symmetries of the cross 
scheme and can be contained, e.g., in about 200 Pascal statements. 

A great simplification afforded by the use of crosses with two different orien- 
tations is that the difference equations representing the problem must be written for 
a single kind of point cluster, that is, a symmetrical cross. Since the formulation of a 
physical problem is generally invariant to rotation, except for the terms 
representing external interactions, only in the latter terms is it necessary to keep 
track of the orientation of crosses. 

Other finite-difference, variable-spacing methods require that the transition 
between regions of different mesh fineness be treated separately, with an ad hoc 
form of the difference equations, thus increasing the size of the program and 
possibly lowering the precision of the calculation. Generally these methods do not 
lend themselves as easily as the present one to dynamic mesh adjustment. 
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The linked data structure and the two basic addition and deletion procedures 
create an extremely flexible computing environment, allowing fast dynamic 
modifications of the local mesh fineness according to the calculation needs. The 
calculation itself proceeds even faster than it would on a two-dimensional array 
representing a square grid with the same number of points, because of the faster 
access time of the linked data structure; this is obtained at the expense of the 
additional memory space necessary to store the links. 

3. DIFFERENCE FORMULATION OF THE NAVIER-STOKES EQUATIONS 

The dynamically adjustable data structure described in the previous section was 
conceived with an explicit calculation scheme in mind. This choice was dictated by 
the difficulty of devising a time-efficient implicit calculation scheme over a variable- 
spacing mesh devoid of coordinate lines, and by the speed improvements obtainable 
for the explicit method in stationary problems, where a “false transient” not 
representing the actual time evolution of the problem can be used, with an 
equivalent “time step” adjusted for each point at the stability limit. Special care is 
needed only in the treatment of first derivatives, in order to insure stability while 
preserving central-difference accuracy. 

The chosen differential formulation of the incompressible Navier-Stokes 
equations over each cross is the standard stream function-vorticity formulation 
[lo], which automatically reduces to the equation d21// = 0 in the irrotational flow 
regions. In connection with the present method this formulation has the additional 
advantage that, being $ and o scalars, the relevant equations are invariant to 
rotation, contrarily to what happens to the separate components of a vectorial 
equation. 

The dimensionless equations are therefore written in a generic Cartesian coor- 
dinate system as 

A,$=w; (1) 

A2~=R(*,w,-*,o,)-o+, (2) 

where (I/ denotes the stream function, w the vorticity, R the Reynolds number, and 
W+ the vorticity production, i.e., the curl of external volume forces. 

The transport equation for a generic fluid property f (temperature, concentration 
of some component, etc.) can be added to Eqs. (l)-(2) and is 

AJ- = N,N$.v.L - kfv) -f +. (3) 

N1- is the dimensionless transport number pertaining to the property f (Prandtl 
number, Schmidt number , etc.) and f + is the production off per unit volume. 

The difference formulation of Eqs. (l)-(3) over a cross adopting central differen- 
ces for all first derivatives does not lead to a simple and stable explicit solution 
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method. In fact, extracting the value of each unknown at the cross center from the 
corresponding equation and recalculating it at each step is known to be a stable 
method only when the cell Reynolds number is low enough, which is not true in 
many interesting cases. The standard manner to recover stability by adopting 
upwinded, rather than central, first differences, has second-order accuracy lost. 

Our solution to the stability problem is a variant of the upstream-weighted dif- 
ferencing scheme [ 11, 121, modified so as to give the same final accuracy as central 
differencing together with the stability properties of upstream differencing. 

The idea of the method is to use the upwinded form of the equations, but modify 
each convective term through a suitable correction factor in order to restore the 
approximation of central differences. Assuming tiU - It/d > 0 and tir - Ic/, > 0, so that 
the proper upwinded differences are f, -f; and ,f, -f,, the difference approximation 
of Eq. (3) is written as 

.fr +f, +fi +fd - 4fc 

=N,RCC,(~,-ICl,)(f,-f,)-C,(IC/,-~,)(f;-f,))lP-h*f+, (4) 

c, = (f, -.hwc -.hL c2 = (f" -fdv(f" -fc) (5) 

and the equations for II/ and o can be obtained as particular cases by letting, 
respectively, R = 0 and f + = --o or N, = 1 and f + = o+. The subscripts r, u, 1, d, c 
denote the right, upper, left, lower vertices, and the center of the cross; h is the dis- 
tance of any vertex from the center. If $, - Gd and/or $,- $, are negative, the 
upwinded differences must be taken in the opposite direction in both Eqs. (4) 
and (5). 

Equation (4) is a central difference equation and yields second-order accuracy. In 
the iteration process, however, Eq. (4) is treated as an upwinded equation, andf, is 
recalculated at each step as 

.fc= {.f,+J;+fi+fd-afc+N,RCC,(~,-~,)f, 

+~,(lC/,-~,)f;1/4-h2f+~/~4-~+ CC,($u-$,I 

+ C*($r - tidl/41> (6) 

while the old value off, is used inside C, and C,. 
The parameter a can be used to overrelax (if positive) or underrelax (if negative) 

the iteration process. A certain amount of overrelaxation increases the convergence 
rate of the iteration, but makes it unstable unless additional modifications are 
introduced; underrelaxation can be necessary, even if it slows down the calculation, 
to maintain stability when motion and transport equations are coupled. 

For motion equations alone, Eq. (6) with a = 0 can be seen to restore the stability 
that was lost by the adoption of central differences, with the only exception 
discussed below, and while it has the same convergence properties as an upwinded- 
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difference scheme, its limiting steady state is the solution of Eq. (4) which is 
second-order accurate. 

By experimenting with Eq. (6) and observing the evolution of the variables under 
this iteration scheme, one can notice a definite smoothing out of perturbations and 
convergence to a steady solution, except for some well-delimited vortices, which 
suddenly appear in the part of the field where the vorticity is expected to become 
negligible and then decay slowly while being transported with the stream. These 
vortices are due to the presence of a denominator in Eqs. (5) whose value in a 
region where f becomes very small is determined mostly by numerical errors and 
can vanish at random times. Consequently the correction coefficients of Eqs. (5) can 
undergo wild fluctuations, with the observed sudden appearance of unexpected vor- 
tices. The remedy to this situation is to check the value of the correction coeflicients 
at each step and restrict them within definite bounds. The exact choice of these 
bounds is not very critical; in fact wherever the approximation of derivatives by 
finite differences is meaningful the ratio between the central and upwinded differen- 
ces must be close to 2; where this ratio is much different from 2 the approximation 
is bad anyhow and altering the value of the coefficient cannot make it any worse. 
From a different point of view, we are considering a region where the solution of 
the differential equations is of very small magnitude and the solution of the finite 
equations consists mainly of noise; provided the noise is not amplified, i.e., the 
algorithm is stable, it is not important whether the equations are altered in this 
region. 

Given the above considerations, one can arbitrarily choose to restrict the correc- 
tion coeflicients between, say, 1 and 3. A less arbitrary choice was also explored, 
but the difference in the results is minimal. With the addition of coefficient range 
checking a simple algorithm was obtained which proved accurate and stable in all 
of our tests. 

A further improvement in the speed of this algorithm was obtained by a careful 
choice of the recalculation order of the grid points. Since the crosses are maintained 
in a linked list, no ordering is privileged as far as access time is concerned. 

Three orderings were tested: 
The first one is generated by the routine used to decrease the size of a cross when 

needed, inserting any required additional crosses in the list immediately after the 
cross whose reduction caused the addition: therefore, in this case, crosses that are 
close in the list tend to be also spatially close to each other. 

The second ordering is also generated by the cross-reduction routine inserting 
each additional cross at the top of the list in the moment it is created. Contrary to 
the first case, now points which are immediate neighbours tend not to be close in 
the list. 

The third ordering is substantially different, because it is changed at each 
iteration step, using a criterion meant to create a streamwise arrangement of crosses 
in the list. For this purpose, during each step the list is scanned in top-down order 
and the crosses are flagged as they are recalculated, checking also whether or not 
the downstream crosses have been already recalculated in the same step. If they 



290 PAOLO LUCHINI 

have been, the cross is moved to the top of the list. This method, which requires 
very little calculation overhead, proves beneficial to stability, even if no fixed order- 
ing is ever definitely established in the list. 

In fact, while in several test runs using the first two orderings no meaningful dif- 
ference was observed, the third method was found to allow a certain degree of 
overrelaxation without losing stability: Eq. (6) can be used with a = 1 in connection 
with the third ordering, whereas a 6 0 is mandatory in connection with the other 
two orderings. 

Finally, we want to point out that, although we have observed the stability of 
Eq. (6) in several cases, stability cannot be always guaranteed. In particular, when 
other unknowns besides I,$ and w are present, as, for instance, in convection 
problems, oscillations of steady amplitude, very small in some cases, have been 
observed, caused by the coupling between the equations. This situation, as well as a 
way to cure it, is further discussed in Section 7. 

4. BOUNDARY CONDITIONS 

At the boundary of the solution domain there exist incomplete crosses, that is, 
crosses whose arms pointing outwards do not correspond to any mesh point. These 
are the points were the boundary conditions appropriate to the problem at hand 
must be imposed. 

In the problem represented by Eqs. (l)-(3), generally, a condition for each 
equation will be needed along all the boundaries. We shall assume a square or rec- 
tangular boundary such that the centers of the incomplete crosses fall exactly on it 
and we shall not be concerned in the following with boundaries passing between 
mesh points. If necessary, this kind of boundary can be treated by our method 
using suitable interpolations or combining the adaptive-grid method with a fixed 
coordinate transformation mapping the curved boundary onto a square one. If a 
conformal mapping is adopted, mixed second derivatives are not introduced by the 
transformation and the validity of the present method is preserved. 

For rectangular boundaries the formulation of boundary conditions parallels 
closely the standard one used for uniform square grids, the only difference being the 
coexistence along the boundary of straight-up and tilted crosses. In particular the 
no-slip condition along a rigid wall, expressed in the I,+ - o formulation by the 
Thorn technique [ 131 is, in the case of a straight-up cross where for instance the 
non-blank link is “up,” 

0, = 2(rcI, - $,I lh2, (7) 

whereas for a tilted cross it is 
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In a similar way, a three-point no-slip condition can be also formulated. It was 
tested by us and did not show in connection with the present method a very 
significant improvement over the two-point condition. Results of this test are repor- 
ted in Section 6. 

Along with the no-slip condition, a condition on each additionalfmust be given. 
When f itself is assigned, the condition is immediate; on the other hand, when the 
condition is given on the normal derivative off (or on a linear combination off 
and its normal derivative), second-order accuracy may be lost if the simplest 
expressions are used, i.e., 

for a straight-up cross, and 

.f: = (fu + .fr - 2fc) Ph (10) 

for a tilted cross. A second-order accurate expression of the normal derivative can 
be obtained also in this case by a 3-point formula, which was tested by us and 
did not yield a really significant improvement over the results obtained with 
Eqs. (9))( 10). 

A completely different kind of boundary conditions arise in connection with 
infinite domains [ 141. This is a complex subject in itself that we can only touch 
superficially here; however, a few comments are in order. In dealing with infinite 
domains two alternatives are possible: to use a transformation of variables to map 
the infinite domain onto a finite one, or to cut the infinite domain along some far 
enough line and substitute the remaining part with boundary conditions along that 
line. The two possibilities are not as different as they may appear at first sight: after 
the change of variables the infinity of the original domain is mapped onto a 
singularity in the transformed domain, and a knowledge of the behaviour of the 
solution in a neighbourhood of the singularity is necessary in order to formulate 
correctly the numerical problem. Finding this behaviour amounts to the same 
problem as finding the appropriate boundary conditions along a far line in the 
original domain. On the other hand, when the original domain is retained, 
generally a non-uniform mesh is required which corresponds to the use of a uniform 
mesh in transformed coordinates. 

Our self-adapting method is particularly well-suited to solve these problems in 
the original infinite domain, since the crosses can automatically grow as large as 
required in approaching the far truncation line, but the appropriate boundary con- 
ditions must be found almost on a problem-by-problem basis. 

5. DYNAMIC MESH ADJUSTMENT 

The mesh structure described in Section 2 can be easily manipulated in order to 
make it finer where required and coarser where sufficient. 
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The manipulation can be done by an operator interactively or by an automatic 
procedure built into the computer code which, periodically after a fixed number of 
iterations of the calculation, verifies the adequacy of the mesh and modifies it accor- 
dingly. The key step in writing such a procedure is to define an adequacy function 
which the routine can apply to decide whether the size of the crosses in any given 
area needs to be changed. The idea of an automatic process using such a function is 
not new [ 1,2]. It is agreed that, for lack of a more direct estimation of the trun- 
cation error of the difference approximation, the decision must be based on the 
order of magnitude of the derivatives of the unknown functions, adopting a more 
closely spaced mesh where the derivatives are higher, and thus the variations shar- 
per, and a coarser mesh where the derivatives are lower. However, while the 
qualitative significance of this criterion is clear, its practical application is not 
problem-free, the main difliculty being that one would like to measure the “order of 
magnitude” of the derivatives in a given region, rather than their value at a single 
point. For instance, the casual vanishing of a particular derivative does not mean 
that an infinite step is adequate. The solution cannot be to take an average of the 
derivatives over a small region, because the determination of the correct size of this 
region can only be based upon an understanding of the characteristics of the 
solution which can hardly be embodied in a computer program. 

This being the situation, we could not find a single criterion enabling the com- 
puter to find a good mesh for all possible problems. This would be a rather 
ambitious task, but we did find several criteria, each of which is best-suited to a dif- 
ferent range of problems. 

The first and simplest criterion tests the second derivatives of all the unknowns at 
each point, through their finite-difference approximations, imposing the condition 
that 

h* < r min (f,,,/.fL 1, I 
where h is the cross size, fa is the maximum absolute value of the second 
derivatives off taken along the two directions of the cross arms, f,,, is a typical 
value off and min, denotes the minimum taken over all the unknowns, $ included. 
r is a factor which must be assigned by the operator based on the precision he 
wants to obtain. The computer must check that h be the largest possible value com- 
patible with Eq. (11) and modify the mesh accordingly. 

In this method the danger of a very large step size being chosen because of the 
vanishing of some derivative is probabilistically defeated by the simultaneous 
testing of several quantities. On the other hand, Eq. (11) contains “typical” values 
which must be arbitrarily assigned and are the same for the whole field, while in 
problems where a small region with a peculiar behaviour such as a boundary layer 
exists, different typical values in different regions would be more appropriate. 
Because of the globally assigned typical value of each unknown f we call this a 
“global” criterion; the other methods we are going to describe tend mainly to 
correct the choice of typical values and to make it independent of the judgement of 
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the operator. As a second, minor, fault, Eq. ( 11) is not completely isotropic, that is, 
equally fair to all directions of space, because fb takes into account only the 
second derivatives along two orthogonal directions. (It is not possible to give a 
finite-difference approximation of a mixed second derivative using only five points 
forming a cross.) This defect is implicit in the cross scheme and is common to the 
other criteria; it does not seem to cause practical problems. 

In spite of its disadvantages, the global criterion works well, at least when boun- 
dary layers are not exceedingly pronounced, and is simple. 

To derive an estimation of the correct step size without relying on typical values, 
it is possible to use both the first and second derivatives of each unknown, together 
with the value of the function itself, to form a quantity with the dimensions of a 
length to which the cross size can be compared. Our second criterion is then 

(12) 

where again f ;cI is the maximum over the two possible directions of the absolute 
value of the second derivative and f & of the first derivative. f ;vl/f E;, and if I/f h must 
be simultaneously tested to avoid that a null size h be forced where either If 1 or& 
is vanishing. 

This “local” criterion works better than the global one in conditions where large 
inhomogeneities exist in the solution field; however, in fluid-dynamic problems the 
stream function tj must be excluded from the test; in fact, the simultaneous 
vanishing of $ and its derivatives, which would be unlikely to happen by chance, is 
purposely imposed as a boundary condition on any rigid wall. Consequently, if the 
test of Eq. (12) is extended to $ as well as to the other variables, the program tends 
to reline indefinitely the mesh in proximity of the wall. On the other hand, when Ic, 
is excluded the program may choose too big a mesh size in the irrotational parts of 
the flow, where $ is the only non-zero quantity, and an upper bound must be 
imposed on size to take care of these regions. 

But, the worst defect of Eq. (12) is that it overestimates the fineness required at 
the outer edge of a boundary layer. In fact, at the outer edge of a boundary layer, 
vorticity typically tends towards 0 as e mUj’2, 4’ being the normal coordinate to the 
boundary and a an appropriate coefficient, so that joYl/lol and (w~.~.J/Io,./ both 
tend to increase linearly with y. Consistently, the program using Eq. (12) chooses 
smaller and smaller spacings going from the boundary layer out into the 
irrotational outer region, up to the point where the exponential decrease of vorticity 
is overridden by numerical errors. 

While both the global and the local criteria are workable, the global one suffers 
by the use of a single “typical” value, not being able to deal properly with a region 
such as a boundary layer where different “typical” values would be needed, and the 
local criterion suffers by trying to represent with exceeding accuracy a region of 
exponential decay, not being able to recognize the scarce importance of the small 
values existing in this region with respect to the global situation. While it is clear 
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that a neither completely global nor completely local criterion is needed, we already 
pointed out the difficulty of devising such a criterion in general. However, for the 
specific cases where boundary layers are clearly identifiable in the solution domain, 
a useful criterion is one similar to the global criterion which uses as a typical value 
of the vorticity the maximum of the absolute value of this function along the line 
connecting the test point to the closest wall. (In addition a global typical value of 
the stream function must still be assigned.) In a situation where a boundary layer 
exists close to each wall, this criterion has the effect that a typical value charac- 
teristic of the local section of the boundary layer is chosen, and in such a situation 
it overcomes all the defects of both the global and the local criteria. 

This third, semi-local, criterion worked best, among the tested ones, in the 
problems where a clear boundary layer structure exists. If, however, this structure is 
not well-defined one of the other two criteria is preferable. 

6. COMPARISON WITH AN EXACT SOLUTION 

To show the efficacy of the described method we shall present the solution of two 
test problems: the Hiemenz stagnation flow, for which an exact solution of the 
Navier-Stokes equations is known [ 151, and the free-convection flow in a square 
cavity. The latter problem is the topic of the next section. 

The Hiemenz flow is generated by a stream impinging normally onto an infinite 
plane wall, where a two-dimensional stagnation point is formed (Fig. 2). 

The corresponding solution of the Navier-Stokes equations in Ic/ -w form is 
$ = xF(y), o = xF”(y), where F must satisfy the equation F”’ + FF" - F'* + 1 = 0, 
with the conditions F(0) = F’(0) = 0, F(co) = 1. This test case was chosen, among 
those for which an exact solution is known, because of the requirement that a 
boundary layer should appear in it, in order to exploit the automatic mesh fineness 
adjustment, notwithstanding the numerical complications deriving from the infinite 
definition domain of the solution. In order to test our variable spacing method free 

FIG. 2. Hiemenz stagnation flow 
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from the errors caused by the truncation of the infinite domain, we rely on the 
knowledge of the exact solution for choosing the appropriate truncation conditions. 

For the numerical solution of the Hiemenz-flow problem, we adopt a square 
domain with a vertex in the stagnation point and two sides lying along the X- and 
y-axes. The boundary conditions on the left side of this square, which is a symmetry 
axis of the solution, are $ = 0, w = 0. On the lower side, which is a rigid wall, $ = 0 
and I,&~ = 0. (The latter can be transformed into a condition for o by using either a 
two-point or a three-point Thorn formula. Both have been tried, with the results 
reported below.) On the upper side the flow field is given by the asymptotic 
irrotational form of the stream coming from infinity, i.e., II/X=x, o =O. Of course 
the size of the square must be chosen large enough for this approximation to be 
valid, but since its error is of exponentially small order this condition is not very 
critical. Contrarily, on the right side of the square the boundary conditions are 
critical, because the boundary crosses both an irrotational and a boundary-layer 
region. However, for this particular problem, knowing the form of the exact 
solution, it is possible to introduce an exact boundary condition in the form of a 
relation between II/, o and their normal derivatives 

L being the side of the square domain. These relations are exactly verified for any L 
by the solution, which depends linearly on x, and therefore no error is introduced 
because of this condition. 

In the following tests, the equations were discretized using Eq. (6) with a = 1. The 
adjustment criterion was the third one presented in Section 5, with regard to w 
only, and a maximum size was imposed on the crosses to keep them from growing 
too large in the irrotational region. 

Tests were run for different values of the fineness parameter r and the square side, 
and for two different discretized no-slip conditions. The imposed maximum cross 
size was 1 when r 6 0.1 and was $ the square side otherwise. Each case was ter- 
minated when the maximum modulus of the difference between successive iterates 
of $ was less that 5 x 10-5, and the result has been used as the starting point for the 
following case. (If the calculation is started directly with a low value of r instead of 
decreasing it gradually the total time employed is considerably longer.) In Table I 
are reported, for a square side of 6.4 and using the two-point boundary condition, 
the number of steps required to complete the calculation, the number of points 
present in the mesh at the end, the time employed on our machine (HP 9826 
desktop computer) and the value of the vorticity at the center of the horizontal wall 
divided by x with its relative error (the exact value is 1.23259), for several values of 
the fineness parameter r. 

The number reported in the “point-steps” column is the number of single-point 
recalculations performed, which is not the product of the number of points and the 
number of steps because the number of points is variable. The number of point- 
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TABLE I 

Hiemenz Flow in a Square with Side 6.4 Using the Two-Point No-Slip Condition 

Fineness 

(f-1 

No. of 
points 

Step 
no. 

Time 
(set) 

Point- 
steps 

to Jx 
(x = 3.2) Error 

5x5 86 8 2150 0.9268 -25% 
0.X IDEM 
0.4 71 184 38 7927 1.0905 -12% 
0.2 129 328 139 25831 1.2523 +1.6% 
0.1 157 428 234 41588 1.2083 -2.0 % 
0.05 334 601 599 98627 1.2349 +0.19% 
0.02 493 723 1006 159074 1.2285 -0.33 % 

TABLE II 

Hiemenz Flow in a Square with Side 12.8 Using the Two-Point No-Slip Condition 

Fineness 

(r) 

No. of 
points 

Step 
no. 

Time 
(set) 

Point- 
steps 

%lX 
(x = 6.4) Error 

5x5 100 9 2500 0.5783 -53 % 
0.8 50 177 27 6245 0.9053 -27% 
0.4 106 284 88 17301 1.0738 -13% 
0.2 210 527 392 67005 1.2374 +0.39 % 
0.1 443 824 1216 195020 1.2121 -1.7% 
0.05 732 1212 3099 477792 1.2327 +0.01 % 

TABLE III 

Hiemenz Flow in a Square with Side 6.4 Using the Three-Point No-Slip Condition 

Fineness 

(r) 
No. of 
points 

Step 
no. 

Time 
(set) 

Point- 
steps 

w,/* 
(x = 3.2) Error 

5x5 76 7 1900 1.2760 +3.5% 
0.8 IDEM 
0.4 50 145 23 5059 1.1799 -4.3 % 
0.2 98 236 74 13683 1.2613 +2.3 % 
0.1 157 362 196 33727 1.2418 +0.75 % 
0.05 329 545 594 93938 1.2483 +1.3% 
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a b 

FIG. 3. Pattern of crosses generated in the solution of the Hiemenz flow problem (a) and resulting 
streamlines (b). 

steps is directly proportional to the calculation time and can be useful to estimate 
the calculation time on other machines. 

Table II reports similar information for a square side of 12.8, still using the two 
point boundary condition, and Table III again for a square side of 6.4, but with the 
three-point boundary condition. 

Table I shows that the number of points in the mesh N is roughly proportional to 
Y- ‘, as can be expected, noticing that Eq. (12) makes the cross size h about propor- 
tional to r’/’ and the number of points is proportional to hP2. The relative error of 
the wall vorticity (skin friction) appears to decrease approximately as r2 and for 
Y = 0.1 is of the order of 1%. That an error of this order of magnitude can be 
obtained for r = 0.1 was generally observed in the majority of the other tests. 

As can be seen from Table II, the results obtained for a square side of 12.8 are 
not significantly different from the ones reported in Table I; whence one can deduce 
that a square side of 6.4 is large enough. Also the results reported in Table III do 
not differ significantly from the previous ones, showing that, in this context, the use 
of a three-point no-slip boundary condition does not afford an improvement over 
the simpler two-point condition. 

The pattern of crosses generated by the program for the case r = 0.1 of Table I is 
reported as an example in Fig. 3a. The cross size is smaller in the boundary layer 
region and increases gradually outwards. It is worth noting that the boundary layer 
thickness for Hiemenz flow is constant. It also can be seen clearly in Fig. 3a how the 
cross-based method takes care automatically of the transition between small spac- 
ing and large spacing regions. 

The well known streamline pattern resulting from the calculation is shown in 
Fig. 3b. 
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7. NATURAL CONVECTION IN A SQUARE CAVITY 

The natural convection in a square cavity whose vertical walls are held at dif- 
ferent fixed temperatures and whose horizontal walls are adiabatic (double glazing 
problem, Fig. 4) has been used by several authors [ 16, 171 as a test problem for 
numerical methods of solution of the steady Navier-Stokes equations with trans- 
port. In particular Ref. [ 161 contains a uniform-mesh implicit solution of this 
problem, which can be usefully compared with the one obtained by the present 
adaptive technique. (A uniform-mesh explicit solution on the same 65 x 65 grid as 
used in Ref. [16] cannot be obtained in a reasonable time.) 

For natural convection , in the Boussinesq approximation, Eqs. (2))(3) must be 
specialized as 

A20 = (ti.rw. - ICI.+) - GT, (13) 

&T=f’(ICI,T,-k&h (14) 

where T is the dimensionless temperature increase, G is the Grashof number and P 
is the Prandtl number. The reference velocity has been chosen so as to make R = 1, 
and GT, is the vorticity production due to gravitational forces. 

The boundary conditions for double glazing are Ic/ = $,, = 0 on the four walls, 
T(0, y)=O, T(1, y)= 1, T,.(x,O)= T,>(x, l)=O. 

To obtain the discretized formulation of this problem, Eq. (6) must be written 
three times, for II/, w and T, respectively. In particular, in the o-equation the 
production term w + is not zero and, since it is not invariant to reference frame 
rotation, must be written differently for straight-up and tilted crosses. Central dif- 
ferences have been used for this term in both cases, obtaining for straight-up crosses 

h2co+ = Gh( T, - T,)/2 (15) 

FIG. 4. Cavity convection (double glazing) problem. 
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and for tilted crosses 

h*o + = Gh( T, + Td - T, - T,) /23J2. (16) 

Just because of the coupling between the w and T equations caused by the 
buoyancy term, when the Grashof number is high the iteration scheme based on 
Eq. (6) with a = 1 does not lead to a steady solution, but rather to an oscillation of 
steady amplitude, even though in many cases the oscillation is small and does not 
prevent an acceptable result from appearing. This oscillation, however, makes it dif- 
ficult to terminate the calculation by an automatic criterion such as to check the 
magnitude of the change of variables between successive iterates. A similar 
behaviour was also noticed in Ref. [16] using an implicit algorithm, and it was 
already pointed out that it can be eliminated by underrelaxing the w-equation with 
respect to the T-equation. 

To explore the origin of this instability one can observe that if the vorticity 
production depended explicitly on o, for instance being w+ = Ao, and instability 
would arise unless we made a d -Ah*. In Eqs. (13)-( 14) a constant such as A does 
not exist, but the vorticity production depends implicitly on o through the tem- 
perature equation, and the coupling grows stronger with the coefficient Gh which 
appears in the discretized form of the buoyancy term, Eqs. (15)-( 16). 

As a consequence we assumed that in our scheme the oscillation can be 
eliminated by choosing, only in the w-equation, a relaxation parameter u equal to 
I-kGh, and determined empirically k as 5 x 10p4, for a Prandtl number of order 
unity. This modification allows a solution to be obtained for a Grashof number at 
least as high as lo’, even though convergence is slow. 

The double glazing problem has been solved by the present variable spacing 
method for P= 0.71 and the same values of the Grashof number considered in 
Ref. [ 161, adding the case G = 1.40845 x 10’ not considered there. The global 
adjustment criterion of Section 5 has been used, with the maximum absolute value 
of each quantity ($, o, T) as its typical value. The conditions $, = 0 and T, = 0 
have been imposed using either two-point or three-point difference formulas. 

Each case has been run for several values of the fineness parameter r, arresting 
the calculation when the maximum modulus of the difference between successive 
iterates of the temperature was less than 1O-6 for G < lo6 and 10mm5 for the last two 
cases. 

As in the previous test, a significant difference was not observed between the 
results obtained using either two-point or three-point formulas for the boundary 
conditions. 

The results obtained are reported in Tables IV-VIII. 
In all these cases the number of points in the mesh, N, is found again to vary as 

r-l; moreover it can be noticed again that making r = 0.1 is sufficient to give an 
error of the order of 1%. This is particularly interesting in view of the wide range of 
Grashof numbers covered. In fact, as G increases the fluid-dynamic field changes 
substantially and boundary layers develop; nevertheless the automatic mesh- 
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TABLE IV 

Cavity Convection for G = 1.4084 x 10’ 

Fineness 

(I) 

No. of 
points 

Step 
no. 

5x5 73 
0.8 69 151 
0.4 131 289 
0.2 231 472 
0.1 499 1049 
0.02 226 1 2121 

From Ref. [ 161 (65 x 65 uniform mesh): 
From Ref [ 181 (33 x 33 modes): 

Time Point- 

&c) steps 
Nusselt 

“0. Error 

IO 1825 1.1639 +4.1 % 
54 7176 1.1410 +2.0% 

221 24684 1.1364 +1.6% 
686 6682 1 1.1252 +0.60 % 

4184 351229 1.1182 -0.03 % 
23133 2183241 1.1185 

I.118 
1.1178 

TABLE V 

Cavity Convection for G = 1.4084 x lo4 

Fineness 

(r) 

No. of 
points 

Step 
no. 

Time 
(set) 

Point- 
steps 

Nusselt 
no. Error 

- 5x5 63 
0.8 91 197 
0.4 160 353 
0.2 322 493 
0.1 562 891 

From Ref. [ 161 (65 x 65 uniform mesh): 
From Ref. [ 181 (33 x 33 modes): 

8 1575 2.2581 -0.18% 
125 13489 2.3384 +3.4% 
381 38403 2.3639 +4.5% 
886 83190 2.2897 +1.2% 

3538 305841 2.2622 

2.250 
2.245 

TABLE VI 

Cavity Convection for G = 1.4084 x lo5 

Fineness 

(r) 

No. of 
points 

Step 
no. 

Time 
(set) 

Point- 
steps 

Nusselt 
no. Error 

5x5 82 
0.8 157 412 
0.4 311 701 
0.2 523 1077 
0.1 1054 2097 
0.05 1992 2845 

From Ref. [ 163: 65 x 65 uniform mesh: 
26 x 26 stretched mesh: 

From Ref. [ 181 (65 x 65 modes): 

11 
540 

1557 
3914 

17340 
37002 

2050 2.8509 -37% 
52103 5.0537 +11.3% 

141390 4.6758 +3.0% 
339236 4.6318 +2.0% 

1413139 4.5749 +0.76 % 
2907352 4.5405 

4.573 
4.595 
4.523 
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TABLE VII 

Cavity Convection for G = 1.4084 x IO6 

Fineness 

(r) 

No. of 
points 

Step 
no 

5X5 II 
0.8 268 262 
0.4 493 551 
0.2 935 918 
0.1 1871 1031 

From Ref. [ 161: 65 x 65 uniform mesh: 
26 x 26 stretched mesh: 

From Ref. [lS] (65 x 65 modes): 

Time 

(set) 

Point- 
steps 

Nusselt 
no. Error 

12 1925 2.5851 -70% 
520 45897 8.5766 -1.7% 

2200 187299 8.5883 -1.6% 
6551 530816 8.7069 -0.2 % 
9275 737387 8.7241 

9.272 
9.066 
8.826 

adjustment procedure chooses the right number and position of the points, giving 
for each case an error of the same order of magnitude. 

At the bottom of each table the values of the Nusselt number calculated in 
Ref. [ 163 are reported. A general agreement is observed; although the difference is 
not eye-catching, it appears that the results of Ref. [ 161 lose precision at the higher 
Grashof numbers, while ours maintain their precision because of the possibility of 
accurately following the boundary layers. 

It must also be said that the implicit algorithm of Ref. Cl63 is faster. However, its 
use is bound to a certain kind of mesh, while our self-adapting mesh allows 
problems with a higher Grashof number to be solved at all, if slowly. 

The isothermal lines and the streamlines corresponding to the results of 
Tables IVVIII are plotted in Figs. 5-9, using the same representation as in 
Ref. [ 161. At low Grashof numbers our results and those of Ref. [16] are 
practically coincident, but with growing G a slight discrepancy arises because of the 
better ability of our adaptive mesh to model the boundary layers. 

It is also interesting to note how at high G the motion tends to be confined to the 

TABLE VIII 

Cavity Convection for G = 1.4084 x lo7 

Fineness 

(I) 

No. of 
points 

Step 
no. 

Time 

(set) 

Point- 
steps 

Nusselt 
no. Error 

5X5 175 27 4375 2.4280 -84% 
0.8 465 864 3704 311324 15.4579 -0.38 % 
0.4 853 1485 10134 839541 15.5162 

From Ref. [18] (65 x 65 modes): 16.51 
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FIG. 5. Streamlines (left) and isothermal lines (right) for G= 1.4084x 103. $ increment is 0.169, T 
increment is 0.1. 

FIG. 6. Streamlines (left) and isothermal lines (right) for G = 1.4084 x 104. $ increment is 0.777, T 
increment is 0.1 

FIG. 7. Streamlines (left) and isothermal lines (right) for G= 1.4084x 105. $ increment is 1.493, T 
increment is 0.1. 
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FIG. 8. Streamlines (left) and isothermal lines (right) for G= 1.4084 x 106. li/ increment is 2.958, T 
increment is 0.1 

FIG. 9. Streamlines (left) and isothermal lines (right) for G= 1.4084x 10’. $ increment is 4.5, T 
increment is 0.1. 

FIG. 10. Pattern of crosses generated for the cavity convection problem for G = 1.4084 x 10) (left) and 
G = 1.4084 x lo6 at fineness parameter r = 0.1. 
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boundary layers existing near the walls, while in the central region the fluid is 
relatively still, with a stable, vertically stratified temperature distribution. 

The arrangement of crosses generated by the computer program is shown in 
Fig. 10 for the lowest and the highest considered G, at a fineness parameter r = 0.1. 
It appears immediately that the grid corresponding to the higher G contains many 
more crosses than the other one, and most crosses tend to gather along the vertical 
walls, and in particular near the upper-left and lower-right corners where the boun- 
dary layers are thinnest. We want to stress again that these two different grids, each 
created for its particular problem, yield an error of the same order of magnitude. 

8. CONCLUSIONS 

An adjustable variable-spacing grid has been presented which allows single points 
to be added to or deleted from it at any time during the calculation. This grid is 
conceived so that each point is the center of a symmetrical cross formed with four 
other points of the mesh and therefore can be used for the numerical solution of 
two-dimensional, steady problems governed by partial differential equations in 
which second derivatives can be confined to the Laplacian operator. For this class 
of problems a second-order accurate difference approximation can be written over a 
cross-shaped cluster of points and used throughout the whole field of calculation. 
The resulting discrete equations are difficult to solve by an implicit method, but for 
steady problems an explicit, false-transient method proves fairly fast, provided that 
the adaption mechanism is operating and the equivalent time-step is adjusted at 
each point at the local stability limit. 

An explicit solution method of the Navier-Stokes equations to be used over this 
grid has also been presented, adopting a hybrid form of the convective terms to 
obtain the accuracy of central differences together with the stability of upwinded 
differences. 

Three adequacy functions which can be used to modify automatically the mesh 
during the calculation have been discussed. 

A program based on these techniques has been tested in two cases: the Hiemenz 
stagnation flow, for which an exact solution is known, and the natural convection 
in a square cavity, for which other numerical solutions exist in the literature. 

The conception of the method presented in this paper is founded on the 
separation of three sub-problems: mesh management, discretization of the 
equations and mesh adaption. For this purpose it was decided to create and delete 
points of the grid instead of moving them along, and the cross structure was 
developed to allow points to be added or deleted one at a time. In addition, having 
a variable number of points lets the computer choose the most suitable number for 
each problem. 

Another advantage of our mesh-modification method over adaptive grid methods 
based on continuous coordinate transformations is that thickening of the mesh in a 
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region does not imply unwanted widenings in other regions. A drawback is that 
implicit or ADI methods cannot be easily implemented, so that we decided to use 
an explicit solution method. However, in false-transient calculations, where only the 
final steady state is of interest, the explicit method was found to work much faster 
on the self-adapting grid than on an uniform grid with the same number of points, 
because of the use of large equivalent time-steps on the larger crosses together with 
small steps on the smaller crosses, pushing each at the local stability limit. 

A critical point of all adaptive mesh methods is the error measure used to drive 
the mesh configuration, and although we found satisfactory measure definitions for 
particular problems, our experience confirms that a general criterion is difficult to 
determine. The modularity of our system, however, allows any function of the mesh 
variables to be defined as the error measure, and to change it only a single function 
definition inside the program must be changed. 

In the test runs against an exact solution (Hiemenz flow), introducing a suitable 
boundary condition to handle the infinite domain, a good agreement was found, 
and no errors ascribable to the variable step size were observed. 

For the cavity convection problem our results were compared with those of 
Ref. [ 161, obtained over a uniform mesh. A good agreement was found at the lower 
values of the Grashof number, for which no boundary layers exist in the flow, but 
at the higher Grashof numbers the uniform-grid method shows up unable to 
represent accurately the flow field, while the present variable-spacing method works 
well at least up to G = 10’. 

Our results are also in good agreement with those of Ref. [18], obtained by 
means of a spectral method in a time of the order of hours on an IBM 370/168. 

Finally, an interesting feature of the cavity convection problem is that at high 
Grashof numbers the motion tends to be confined within a boundary layer near the 
walls, and in the center a calm region appears where the temperature is vertically 
stratified. Our variable-spacing method is appropriate for the solution of this kind 
of problems, where regions with completely different behaviour exist, especially 
when the position of these regions is not known in advance. 
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